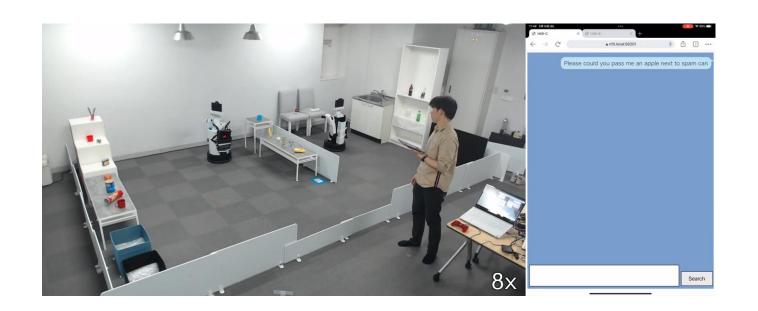


DialMAT: Dialogue-Enabled Transformer with Moment-Based Adversarial Training

Kanta Kaneda*, Ryosuke Korekata* Yuiga Wada*, Shunya Nagashima*, Motonari Kambara, Yui Iioka, Haruka Matsuo, Yuto Imai, Takayuki Nishimura and Komei Sugiura

Keio University


^{*} Equal Contribution


Background: Multimodal language processing for robots

Motivation:

- Multimodal language understanding & generation methods for domestic service robots (DSRs)
 - Focus of DialFRED [Gao+ RAL22] := instruction following with QAs

Related work

Grounded communication	RoboCup@Ho
with robots	World Robot S

Representative methods for ALFRED

Object navigation with dialogue

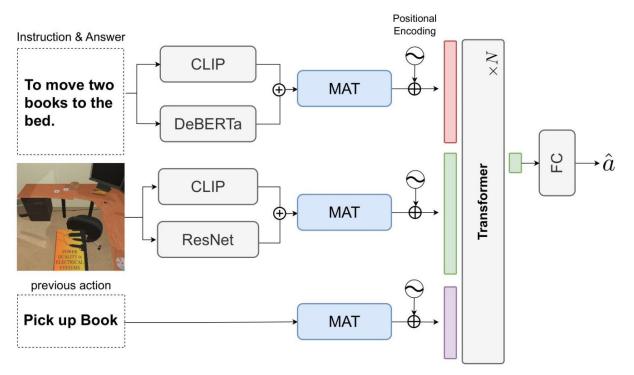
RoboCup@Home (2007-)

RoboCup@Home [locchi+ Artificial Intelligence15],
World Robot Summit [Okada+ Advanced Robotics19]

Prompter [Inoue+ 22], FILM [Min+ ICLR22], HLSM-MAT [Ishikawa+ ICPR22], E.T. [Pashevich+ ICCV21]

DialFRED [Gao+ RAL22], TEACh [Padmakumar+ AAAI22], Vision-and-Dialog Navigation [Thomason+ CoRL19]

World Robot Summit (2018-)



REVERIE [Qi+ CVPR20]

Our method: DialMAT

- 1 Moment-based Adversarial Training (MAT) [Ishikawa+, ICPR22]
 - Add adversarial perturbation to embedding spaces
- 2 Crossmodal parallel feature extraction mechanism
 - CLIPtxt and DeBERTa v3
 - CLIP_{img} and ResNet

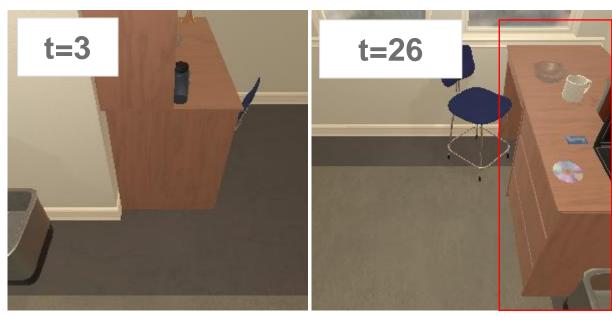
Moment-based Adversarial Training (MAT) [Ishikawa+ ICPR22]: Add adversarial perturbation to the embedding spaces

Update adversarial perturbation δ (cf. VILLA [Gan+ NeurIPS20])

$$\delta_{t+1} = \Pi_{\|\delta\| \leq \epsilon} (\delta_t + \frac{\Delta \delta_t}{\|\Delta \delta_t\|_F})$$
 To move two books to the bed. $\frac{\hat{m}_t}{\sqrt{\hat{v}_t + \varepsilon}}$ EMA of $\nabla_{\delta} E(\delta) = \frac{\partial \delta}{\partial E}$ EMA of $\nabla_{\delta} E(\delta) = \frac{\partial \delta}{\partial E}$

EMA: Exponential Moving Average

Quantitative Results: Outperformed the baseline method in terms of SR



Method	Pseudo_Test SR↑	Pseudo_Test PWSR↑	Test SR↑
Baseline [Gao+, RA-L22]	0.31	0.19	-
Ours (w/o MAT)	0.34	0.20	_
Ours (w/ CLIP text encoder)	0.35	0.22	_
Ours (MAT for action)	0.36	0.21	_
Ours (DialMAT)	0.39	0.23	0.14

- Divided the valid_unseen set of DialFRED dataset
 - (pseudo_valid : pseudo_test) = (1,296 : 1,363) scenes
- Metrics: Success Rate (SR), Path Weighted Success Rate (PWSR)

Qualitative Results: Output appropriate actions to successfully complete the task

t=146

Instruction: "Move to the desk"

Instruction: "Move to the floorlamp power on the floorlamp"

Navigated to the specified desk

© Navigated to the appropriate location and executed the appropriate action

Conclusions

■ Introduced MAT to incorporate adversarial perturbations into the latent spaces of language, image, and action

■ Introduced a crossmodal parallel feature extraction mechanisms to both language and image using foundation models

Our code is available here

DialMAT: Dialogue-Enabled Transformer with Moment-Based Adversarial Training

Kanta Kaneda*, Ryosuke Korekata* Yuiga Wada*, Shunya Nagashima*, Motonari Kambara, Yui Iioka, Haruka Matsuo, Yuto Imai, Takayuki Nishimura and Komei Sugiura

Keio University

^{*} Equal Contribution